ECDSA 签名算法

   #ECC #加密 #ECDSA #素数 #模逆元 

ECDSA 签名

前面讲过ECDH的加密,现在写点关于签名的东西。 ECDSA 相对于 RSA 签名,速度更快,签名更短。 已知消息 $Message$ ,这里对其做哈希(sha256)求得结果。 这里不对消息本身签名,因为消息太长了,计算量太大。签名一般都是对消息的hash进行签名。
\(\begin{aligned} & h = Hash(Message) \\ & dA = Your Private Key\\ & P = dA \cdot G \end{aligned}\) $dA$是用于签名的,保密,不能公开。$P$是公钥,$h$是消息的哈希摘要。一般使用SHA256生成。
下面的n表示 生成元G 的阶, 选取的合适的生成元G 保证 n是是一个尽量大的素数
\(n \cdot G = O\)

注意,这里的n 不是求解方程的时候的有限域素数p,两者不同

步骤

  1. 随机生成 32 位数字 $k$ 作为临时私钥,并生成临时公钥$R$
\[R = k \cdot G\]

这里注意随机不可预测,后面会写到不随机的后果。

  1. 计算 S 签名

    \(S = k^{-1}(h + dA \cdot R_x) \pmod n\) 这里 $k^{-1}$ 是k的模n逆元
    $R_x$是临时公钥$R$的x坐标 $p$ 是 曲线规定的素数,$G$是公共点 将$(S,R_x)$ 整体作为签名。

快速求模逆元,可以用扩展欧几里得算法,具体方式就是辗转相除,细节可以看百科

  1. 验证
    1. 计算

    \(R = S^{-1}(h \cdot G + P \cdot R_x)\)

    1. 比较 $R$ 的x坐标 $R_{x}$ 等于第2部结果中的 $R_x$,验证就通过。

证明

由于

\[R = k \cdot G \\ P = dA \cdot G\\ \downarrow\\ \begin{aligned} R &= S^{-1}(h \cdot G + dA \cdot G \cdot R_x ) \\ &= S^{-1}G (h + dA \cdot R_x) \\ &= kG \\ \end{aligned}\\ \downarrow\\ k = S^{-1}(h + dA \cdot R_x)\]

两边同时取逆

\(k^{-1} = S (h + dA \cdot R_x)^{-1}\) \(S = k^{-1}(h + dA \cdot R_x)\)

与$S$ 的生成公式一样,所以等式成立。

随机数不随机造成的私钥泄露事件

k的选取要随机,不可预测。 索尼就犯了这样的错误,PS3 所有的游戏签名,用到的都是同样的随机数$k$, 这样只要购买两个游戏,就能获得对应的签名

$(S_1,R_x)$ ,$(S_2,R_x)$ 由于是同样的k,导致公钥的$R_x$坐标也是一样的。 \(\begin{cases} S_1 = k^{-1}(h_1 + dA \cdot R_x)\\ S_2 = k^{-1}(h_2 + dA \cdot R_x) \\ \end{cases}\\ \downarrow\\ S_1 - S_2 = k^{-1}(h_1 - h_2)\) 这里 $S_1, S_2, h_1, h_2$都是已知的, 很容易就计算出$k$,
然后 \(R = k \cdot G\) 计算出$R_x$,代入 \(S_1 = k^{-1}(h_1 + dA \cdot R_x)\)
很容易就计算出私钥$dA$ , 这样就能随意签名其他盗版游戏文件了。

ECC 遇到的挑战

目前的估算认为:破解256位素数域上的椭圆曲线,需要2330个量子比特与1260亿个托佛利门。相比之下,使用秀尔算法破解2048位的RSA则需要4098个量子比特与5.2万亿个托佛利门。因此,椭圆曲线会更先遭到量子计算机的破解。 —

DH(Diffie-Hellman)密钥交换算法算法

用到的也是离散对数难题 公开一个 $(x,p)$ ,其中,x 是随机数,p是一个大素数
A 随机生成一个随机数 $r_a$ 计算 $m = x^{r_a} \mod p$, 保密 $r_a$ B 随机生成一个随机数 $r_b$ 计算 $n = x^{r_b} \mod p$, 保密 $r_b$ AB 互换 mn, 计算密钥 \(\begin{aligned} K_a & = n ^ {r_a} \\ & = {(x ^{r_b})} ^ {r_a} \\ & = x^{r_a \cdot r_b}\\ & = {(x ^{r_a})}^{r_b}\\ & = m ^{r_b}\\ & = K_b \\ & = K \end{aligned}\)

AB计算出来的$K_a,K_b$相等,都是$K$
$K$ 就是两者交换的密钥。 例子 公布 $(x,p)= (2,17)$; A 取随机数 3 ,计算 $m = 2^3 \mod 17 = 8$
B 取随机数 5 计算 $n = 2 ^ 5 \mod 17 = 15$
交换 AB 交换$m,n$
A 计算密钥 $k = n ^ 3 \mod 17 = 9 = K$
B 计算密钥 $k = m ^ 5 \mod 17 = 9 = K$
$K =9$ 就是密钥

注,DH算法也无法完全避免中间人攻击,交换m和n的过程中,如果遇到中间人,A 和B 是无法感知的。



const exGcd = require("./exGcd.js");
const isPrime = require("./miller-rabin.js");
const eulerJudge = require("./euler-judge").eulerJudge
const cipolla_sqrt = require("./cipolla").cipolla_sqrt;
const ZeroPoint = { x: 0, y: -1 };
const a = 0n;
const  b = 7n 
const MaxCofactor = 8;
function exGcd_Num(a, b) {
  return Number(exGcd(BigInt(a), BigInt(b)));
}
function isSamePoint(A,B){
  return A.x == B.x && A.y == B.y;
}
function getRandomPrime(){
  while(1){
    var m = 65536000 + Math.floor(Math.random() * 100000000);
    if (m > 2 && isPrime(m) ) {
      console.log('random prime:',m);
      return m ;
    }
  }   
}
class ECC{
  
  constructor(){
    /*
    this.Prime = 9319;
    // this.h = 1;
    // this.CurveOrder = 9127;
    /// order = curveorder / h
    this.Order = 9127;
    this.G = { x: 5762, y: 1167 };
    */
    this.Prime = 6741313;
    // this.h = 1;
    // this.CurveOrder = 6742804;
    /// order = curveorder / h
    this.Order = 1685701;
    this.G = { x: 2331692, y: 6255336 };

    this.Prime = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2Fn

    this.Order =  0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141n
    var x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798n;
    var y = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8n
    this.G = {x,y};

  }


  logN(a,msg){
    console.log('' + msg,a.toString(16))
  }
  PointAdd(P, Q) {
    const Prime = this.Prime;
    if (P.y < 0) {
      return Q;
    }
    if (Q.y < 0) {
      return P;
    }

    var k = 0;
    if (P.x == Q.x && P.y == Q.y) {
      /// 特殊点,斜率无穷大
      if (P.y == 0) {
        return ZeroPoint;
      }

      this.logN(0,'----------------------------')
  
      var tmp = exGcd(2n * P.y, Prime);
      k = ((3n * ((P.x * P.x) % Prime) + a) * tmp) % Prime;

      if (k < 0) {
        k += Prime;
      }
     
    } else {
      if (P.x == Q.x) {
        return ZeroPoint;
      }

      var tmpz = (P.x - Q.x) % Prime;
      if (tmpz < 0) {
        tmpz += Prime;
      }
      var tmp = exGcd(BigInt(tmpz), BigInt(Prime));

      var tmpDy = ((P.y - Q.y) % Prime) + Prime;
      k = (tmpDy * tmp) % Prime;
      if (k < 0) {
        k += Prime;
      }

      // console.log("px",P.x.toString(16));
      // console.log("py",P.y.toString(16));
      // console.log("qx",Q.x.toString(16));
      // console.log("qy",Q.y.toString(16));

      // console.log("k",k.toString(16));
    }

    const x = (((k * k - P.x - Q.x) % Prime) + Prime) % Prime;
    const y = ((((-P.y + k * (P.x - x)) % Prime) + Prime) % Prime);

    // this.logN(k * k - P.x - Q.x,"MMM")
    // this.logN('-------------')
    // this.logN(P.x,"P.x")
    // this.logN(Q.x,"Q.x")
    // this.logN(k * k ,"kk")
    // console.log("k",k.toString(16));
    // console.log("xx",x.toString(16));
    // console.log("yy",y.toString(16));
    return { x, y };
  }

  PointTimes(P, s){
    var s1 = s % (this.Order );
    return this._PointTimes(P,s1);
  }
  _PointTimes(P, s) {
    if (s == 0) {
      return ZeroPoint;
    }
    if (s == 1) {
      return P;
    }
    if (s == 2) {
      return this.PointAdd(P, P);
    }

    var s_0 = s % 2n;
    var s_2 = (s - s_0) / 2n;
    var P2 = this._PointTimes(P, s_2);
    var result = this.PointAdd(P2, P2);
    if (s_0) {
      result = this.PointAdd(result, P);
    }
    // console.log('times',P,result,s)
    return result;
  }

  genKeyPair(key){
    if(key == 0 || key >= this.Order){
      throw `key must  be  between [0,  ${this.Order}]`
      return
    }
    var keyout = key ? key : Math.floor(Math.random() * this.Order)
    while(keyout == 0){
      keyout =  Math.floor(Math.random() * this.Order)
    }
    return {
      private:keyout,
      public:this.PointTimes(this.G,keyout),
      curve:{
        P:this.Prime,
        Order:this.Order,
        G:this.G
      }
    }
  }

  ecdh(privatekeyA,publicKeyOfB){
    return this.PointTimes(publicKeyOfB,privatekeyA);
  }


  // return <R.x, S>
  SingMsg(msgHash,PriKey){
    const Order = this.Order;
    const G = this.G;
    if (PriKey == 0) {
      throw "privateKey cant  be 0"
    }

    var S = 0;
    do{
      var randK = Math.floor(Math.random() * Order);
      if (randK == 0) {
        randK = 1;
      }


      var R = this.PointTimes(G, randK);
      var k1 = exGcd_Num(randK, Order );
      S = k1 * ((msgHash + (PriKey * R.x % Order)) % Order) % Order ;
    }while(  S == 0);

    
    return [R.x,S];
  }

  VerifySign(msgHash,SignInfo,PubKey){
    const Order = this.Order;
    const G = this.G;
    var Rx = SignInfo[0];
    var S = SignInfo[1];
      
    var S1 = exGcd_Num(S, Order );
    var CheckR = this.PointAdd(
      this.PointTimes(G, (msgHash * S1) ),
      this.PointTimes(PubKey, (Rx * S1) )
    );
    return CheckR.x == Rx;
  }
  
  _findGeneratorG(Prime){
   // 找到素数阶生成元
   if(1){
    /**
     * 计算曲线的阶应该使用 schoof 算法,以后再更新..
     */
    var OrderOfCurve =  1;
    for (let x = 0; x < Prime; x++) {

      var a = ((x * x % Prime)* x + b) % Prime ;
      var exist =  eulerJudge(a,Prime);
      if (exist ) {
        /// a== 0 ,那么 y = 0,只有一个点
        OrderOfCurve += (a == 0 ? 1 : 2);
      }
    }
  
      
      
    /// 分解 曲线的阶 n = r * p ^k, p 是素数,那么肯定存在 阶为p ^k的子群, 西罗定理 , 这里k 一般是 1 ,(r,p)互质

    var h =  1;
    var tmpOrder = -1;
    var isSucc = 0;;
    /// h 很小,保证 order 很大
    for (let r = 1; r < MaxCofactor ; r++) {
      if (OrderOfCurve % r == 0) {
        var order0 = OrderOfCurve/r;
        if (isPrime(order0)) {
          tmpOrder = order0;
          h  = r;
          isSucc = 1;
          break;
        }
      }
    }


    if(h == tmpOrder){
      tmpOrder *= h;
      h = 1;
    }

    
      
    console.log('\n\n\n-----------');
    console.log("Prime ",Prime);
    console.log("curve Order ",OrderOfCurve)
    console.log("group Order ",tmpOrder)
    console.log("h ",h)
      

    if(isSucc == 0 ){
      return 0
    }

    this.Order = tmpOrder;
    this.Prime = Prime;
    var G ;
    do{

      var tmpG = {x:0,y:-1}
      do {
        tmpG.x = Math.floor(Math.random() * Prime);
        // -1 表示无解

        var tmp = Number(BigInt(tmpG.x) * BigInt(tmpG.x)  % BigInt(Prime) * BigInt(tmpG.x) % BigInt(Prime)) + b
        tmpG.y  = cipolla_sqrt(tmp, Prime );
        console.log(tmpG);
      } while (tmpG.y < 0);

      G = this.PointTimes(tmpG,h);
    }while(G.y < 0 )
  
    console.log("generator of G ",tmpG);
    console.log("G ",G);
    var checkG = this._PointTimes(G,tmpOrder)
    console.log('check G',checkG.y < 0 ? '✅' : '❌' )
    console.log('-----------\n\n\n');
    if(checkG.y >=0){
      throw "order of curve is wrong"
    }
    
    this.G = G ;
    return 1;

  }
  }

  findNewGroup(){
    var result = 0;
    do {
      var Prime =  getRandomPrime();
      result = this._findGeneratorG(Prime);
    } while (result == 0);
  }

  /**
   * Menezes-Vanstone 密码体制
   * msg 这里限制 4字节.数字,仅原理展示
   */
  encyptMsg(msg,PubKey){
    var randK =  Math.floor(Math.random() * this.Order);
    while(randK == 0){
      randK =  Math.floor(Math.random() * this.Order);
    }


    var PubRnd = this.PointTimes(this.G,randK);
    var dh = this.PointTimes(PubKey,randK);
    // 可以把msg 按字节平分,
    // msg -> (msg0 msg1);
    
    let bf =   Buffer.alloc(4,0);

    bf.writeUInt32BE(msg);
    var msg0 = bf.readUInt16BE(0);
    var msg1 = bf.readUInt16BE(2);
    if (msg0 > this.Prime || msg1 > this.Prime) {
      throw 'msg too large'
    }
 
    var out0 = Number(BigInt(msg0) * BigInt(dh.x) % BigInt(this.Prime));
    var out1 = Number(BigInt(msg1) * BigInt(dh.y) % BigInt(this.Prime));
 
    return [PubRnd,out0,out1];
  }

  decryptMsg(cipher,privatekey){
    var tmpPub = cipher[0];
    var dh  = this.PointTimes(tmpPub,privatekey);
 
    var x1 = exGcd(BigInt(dh.x),BigInt(this.Prime));
    var y1 = exGcd(BigInt(dh.y),BigInt(this.Prime));
    
    var msg0 = Number(BigInt(cipher[1]) * x1 % BigInt(this.Prime));
    var msg1 = Number(BigInt(cipher[2]) * y1 % BigInt(this.Prime));


    /// 避免溢出,实际上,溢出了肯定就是解密失败了
    msg0 = msg0 & 0xffff;
    msg1 = msg1 & 0xffff;

    let bf = Buffer.alloc(4,0);
    bf.writeUInt16BE(msg0);
    bf.writeUInt16BE(msg1,2);
    var outMsg = bf.readUInt32BE(0);
    return outMsg;
  }

}

exports.EC = new ECC;
let ec =  new ECC;

// for (var i = 100 ; i < 120 ; ++ i ){
//   var s = ec.PointTimes(ec.G,i);
//   console.log(i,"---",s);
// }

var s = ec.PointTimes(ec.G,3n);
console.log("---Finalx",s.x.toString(16));
console.log("---Finaly",s.y.toString(16));




if(0){
  var p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2Fn
  var x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798n
  var n = ((x * x % p) * x )% p + 7n

  // y^2 = x^3 + ax + b mod Prime

  var y = cipolla_sqrt(n,p);
 
  console.log("Y",y.toString(16))
  console.log("Y2",((p - y ) % p).toString(16) )


  // 32670510020758816978083085130507043184471273380659243275938904335757337482424n
}



!function(){
const EC = require('./ecc').EC
var a = EC.genKeyPair(Math.floor(Math.random() * EC.Order ));
var b = EC.genKeyPair();
console.log('keypair A',a );
console.log('keypair B',b );
if(1){
    var ecdhA = EC.ecdh(a.private,b.public);
    var ecdhB = EC.ecdh(b.private,a.public);
    console.log('ECDH of A', ecdhA);
    console.log('ECDH of B', ecdhB);
    console.log('ECDH A == B ?', ecdhB.x == ecdhA.x && ecdhB.y == ecdhA.y);
}


if(1){
    console.log('\n\n-----------Sign-------')
    var msgHash = Math.floor(Math.random() * EC.Order);
    console.log('msg to be sign:',msgHash);
    var signinfo = EC.SingMsg(msgHash,a.private);
    console.log('sign with key A.private result',signinfo);

    var ra = EC.VerifySign(msgHash,signinfo, a.public);
    var rb = EC.VerifySign(msgHash,signinfo, b.public);

    console.log('verify with A.public:',ra ? '✅' : '❌');
    console.log('verify with B.public:',rb ? '✅' : '❌');
}


if(1){
    console.log('\n\n--------------Encryption (Menezes-Vanstone)--------')
    var msg = Math.floor(Math.random() * EC.Prime) & 0xffffffff;

    console.log('message :',msg);

    var cipher = EC.encyptMsg(msg,a.public);

    console.log("encrypt (by A.public):",cipher);
    var msg2 = EC.decryptMsg(cipher,a.private);
    console.log('decrypt (by A.private)',msg2,msg2 == msg ? '✅' : '❌');

    msg2 = EC.decryptMsg(cipher,b.private);
    console.log('decrypt (by B.private)',msg2,msg2 == msg ? '✅' : '❌');
}
 

// // // 重新生成素数P,生成点
// EC.findNewGroup()
// var c = EC.genKeyPair()
// console.log(c); 

}();


keypair A {
  private: 338741,
  public: { x: 1237765, y: 721891 },
  curve: { P: 1271293, Order: 423013, G: { x: 336180, y: 636912 } }
}
keypair B {
  private: 270816,
  public: { x: 541275, y: 574997 },
  curve: { P: 1271293, Order: 423013, G: { x: 336180, y: 636912 } }
}
ECDH of A { x: 145062, y: 1113104 }
ECDH of B { x: 145062, y: 1113104 }
ECDH A == B ? true


-----------Sign-------
msg to be sign: 257748
sign with key A.private result [ 120209, 278454 ]
verify with A.public: ✅
verify with B.public: ❌


--------------Encryption (Menezes-Vanstone)--------
message : 90572
encrypt (by A.public): [ { x: 995290, y: 1257659 }, 129839, 955553 ]
decrypt (by A.private) 90572 ✅
decrypt (by B.private) 3740080411 ❌